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Abstract
We consider a weakly interacting finite wire with short and long range interactions. The long
range interactions enhance the 4kF scattering and renormalize the wire to a strongly interacting
limit. For large screening lengths, the renormalized charge stiffness Luttinger parameter Keff

decreases to Keff <
1
2 , giving rise to a Wigner crystal at T = 0 with an anomalous conductance

at finite temperatures. For short screening lengths, the renormalized Luttinger parameter Keff is
restricted to 1

2 � Keff � 1. As a result, at temperatures larger than the magnetic exchange
energy we find an interacting metal which, for Keff ≈ 1

2 , is equivalent to the Hubbard U → ∞
model, with the anomalous conductance G ≈ e2

h .

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The anomalous conductance G ≈ 0.7×(2e2/h) discovered by
Pepper et al [1] and further investigated by [2–6] is one of the
major unexplained effects in quantum wires. Several theories
have been proposed: phenomenological theories [7, 8], the
Kondo effect [4], spin polarization [9, 10], formation of
bound states [5], unrestricted Hartree–Fock calculations for
point contacts [11], Wigner crystal [12], ferromagnetic spin
coupling [13], ferromagnetic zigzag structures [14], the spin
incoherent Luttinger liquid [15–17], and the formation of a
quasi-localized state [18]; however no consensus has been
reached.

For non-interacting spin unpolarized electrons, the
conductance of narrow ballistic quantum wires connected to
two (large) reservoirs is quantized in units of 2e2/h. An
early suggestion was that the electron–electron interaction
should modify the conductance for a Luttinger liquid [19, 20]
as K (2e2/h) where K is interaction-dependent. Using the
method of bosonization for weakly interacting fermions, it has
been shown that by taking first the frequency limit ω → 0
before the momentum limit q → 0, the non-interacting leads
modify the metallic conductance to the limit G = 2e2

h [21–23].
GaAs/AlGaAs in the lowest populated conduction band is

a weakly interacting metal characterized by the Luttinger liquid

charge K � 1 and spin Ks ≈ 1 parameters. The presence
of the unscreened, long range Coulomb interaction (in a one-
dimensional wire) alters this picture. From our renormalization
group study [24] we find that the Coulomb long range
interaction enhances the weak 4kF scattering channel and
decreases the Luttinger charge parameter to Keff � 1. As a
function of the screening length, we can have either a strongly
interacting metal (similar to the Hubbard U = ∞ model) or
an insulating Wigner crystal. In order to capture both phases,
we investigate a microscopic model of a wire of length L
with a lattice constant a in the presence of a weak scattering
potential. The lattice constant a is much smaller than the
transverse width d of the wire, which controls the low energy
excitations in the lowest band. The effective model in the
lowest band is given by the renormalized lattice model. This
is achieved by a real space renormalization group procedure,
which replaces the discrete lattice model (lattice constant a) by
the new lattice constant d = integer × a, and renormalized
interaction coupling constants. The effective model at the
length scale d will be a function of the microscopic Fermi
momentum kF (defined by the electronic density) and the
effective umklapp momentum G(d), obeying the relation G(d) ·
d = G(a) · a, where G(a) is the microscopic umklapp vector.
At the length scale d , the long range interaction is separated
into two parts: the large momentum transfer, included in the
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effective short range Hubbard interaction, and the f orward
Coulomb interaction. The forward Coulomb interaction gives
rise to 4kF = G(Wigner) = 2π

re−e
oscillations [25], where re−e

is the inter-particle distance. At T = 0, a Wigner crystal
ground state with a charge gap � is formed if the effective
charge parameter obeys Keff <

1
2 . At finite temperatures,

comparable to the charge gap �, the conductance is given
by G ≈ e2

h . For short screening lengths, the interacting
parameter Keff is restricted to 1

2 � Keff < 1. As a result,
we find that at finite temperatures which are larger than the
magnetic exchange energy, the limit Keff ≈ 1

2 is equivalent to
the Hubbard U = ∞ model. Therefore, at finite temperatures
we find the conductance is given by G ≈ e2

h .
The plan of this paper is as follow: in section 2, we

present the interacting fermion model. The renormalization
effects for the finite wire will be investigated in section 3 using
the zero mode formulation [22, 26, 27]. In section 4, we
present the fermion–boson representation for the interacting
wire. In section 5, we present the renormalization group
(RG) analysis and show that the renormalization effects of
the effective charge interaction parameter Keff are controlled
by the electronic density and screening length. In section 6,
we use the renormalized interaction parameters to compute
the effective zero mode Hamiltonian at finite temperatures for
1
2 � Keff < 1. Section 7 is dedicated to the computation of
the conductance at finite temperatures for 1

2 � Keff < 1. In
section 8, we consider the case 1

2 ≈ Keff and show that the
model is equivalent to the incoherent Luttinger liquid, which
emerges at finite temperatures for the Hubbard U → ∞
model. In section 9, we consider the case Keff <

1
2 , which

at zero temperature gives rise to a Wigner crystal with a charge
density wave gap �. In section 10, we present our numerical
results using the experimental parameters given by [3]. In
section 11, we examine the effect of the Zeeman interaction.
Section 12 is devoted to conclusions. Appendix A deals with
the thermodynamics of the zero modes, and in appendix B we
present the calculation of the self-energy for a wire of length
L ≈ 10−6 at temperatures T ≈ 1 K.

2. The model

We consider an interacting wire at low electronic densities that
has a finite width d . The geometric parameters in the quantum
wire experiments are: the gate screening length ξ = 10−7 m,
the wire length L ≈ 10−6 m, the width d ≈ L

100 , the two-
dimensional carrier density ns ≈ 2.5 × 1011 cm−2 and the
electronic lattice spacing a ≈ 10−10 m. Due to the width
d , the single particle excitations are characterized by a set
of electronic bands with the transverse quantization energies

h̄2

2m∗
(r2)π2

d2 , r = 1, 2, 3 . . .. The gate voltage is such that, at
the temperatures considered in the experiment, only the lowest
band is populated. In order to describe the low energy physics,
we project the microscopic Hamiltonian H a (the microscopic
model defined at the lattice scale a) into the lowest band.
As a result, the effective one-dimensional Hamiltonian H
with the energy cut-off characterized by the transversal energy
separation h̄2

2m∗
π2

d2 and the momentum cut-off � = 2π
d preserve

the original form of the microscopic Hamiltonian H a:

H = −td
∑

n

∑

σ=↑,↓
(ψ+

σ ((n + 1)d)ψσ (nd)+ h.c.)

− εF

∑

n

∑

σ=↑,↓
ψ+
σ (nd)ψσ (nd)

+ Û
∑

n

ψ+
↓ (nd)ψ↓(nd)ψ+

↑ (nd)ψ↑(nd)

+
∑

n

∑

n′ 
=n

∑

σ=↑,↓

∑

σ ′=↑,↓
ψ+
σ (nd)ψσ (nd)V (c)

× (|nd − n′d|)ψ+
σ ′(n′d)ψσ ′(n′d) (1)

where td ≈ h̄2

2m∗d2 is the effective hopping at the length scale

d , and Û is the projected repulsive Hubbard interaction, which
also contains the effect of the Coulomb interaction obtained
by projecting out states with a lattice spacing in the interval
a–d . V (c)(|nd − n′d|) = e2√

(n−n′)2d2+d2
− e2√

(n−n′)2d2+ξ 2

is the effective long range Coulomb interaction defined for
distances x > d and ξ is the screening length. The Hubbard
model is characterized by the particle–hole charge and spin
excitations: K � 1 (charge) and Ks � 1 (spin). We consider
the situation where the Fermi momentum kF(VG) satisfies the
condition 4kF(VG) 
= Gd ≡ 2π

d , re−e > d , suggesting
that the umklapp interaction is negligible. According to [3],
the density is expressed in terms of the external gate voltage
VG: kF(VG) = π

2 ne(VG) = Ca
e (VG − V th), where V th is

the gate voltage at which the wire is pinched off and Ca
e is

the effective capacitance. The results reported in [3] show
that the conductance decreases with the lowering of the gate
voltage, suggesting that the umklapp interaction is significantly
enhanced. The low energy properties of the model will be
investigated using a combined method of bosonization and RG
theory. At finite temperatures, the exact description of the
electron excitations requires the inclusion of the zero modes
operators.

3. The representation of the electron operator for a
wire of length L

The electron is represented as a product of two operators, a
bosonic one (this is the standard bosonic representation for
spin-charge excitations) and a fermionic-zero mode operator,
which carries the electron number (electrons with spin up or
spin down that are added or removed from the Fermi surface).
The electron operator ψ+

σ (x) is restricted by the momentum
with a momentum cut-off [�,−�] around the Fermi surface
and is given in terms of the right Rσ (x) and left Lσ (x)
components: ψσ (x) = eikF x Rσ (x) + e−ikF x Lσ (x) with the
Fermi momentum kF = kF(VG). We replace the right (left)
mover fermion by a product of a fermion operator FR,σ (x)
(FL,σ (x)) and the boson operator ei

√
4π
R,σ (x) (ei

√
4π
L,σ (x)):

Rσ (x) =
√
�

2π
eiαR,σ ei(2π/L)(N̂R,σ−1/2)x ei

√
4π
R,σ (x)

≡ FR,σ (x)e
i
√

4π
R,σ (x) (2)

Lσ (x) =
√
�

2π
e−iαL,σ e−i(2π/L)(N̂L,σ−1/2)xe−i

√
4π
L,σ (x)

≡ FL,σ (x)e
−i

√
4π
L,σ (x) (3)

2
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where ei
√

4π
R,σ (x) and e−i
√

4π
L,σ (x) are the standard bosoniza-
tion formulae used in the literature. FR,σ (x) and FL,σ (x) are
the zero mode fermion operators that can change the num-
ber of particles and are crucial for enforcing the Fermi statis-
tics. These operators are defined with respect to the non-
interacting ground state |F〉 (the Fermi sea characterized by
the Fermi momentum). The electronic Hilbert space excita-
tions above the Fermi sea are given by the states [22, 26]:
|NR,σ ; mq〉 ⊗ |NL,σ ; m ′

q〉, where mq � 0, m ′
q � 0 are in-

tegers which specify the number of bosonic quanta (particle–
hole excitations) with a momentum q = 2π

L nq > 0. N̂R,σ ,

N̂L,σ represent the change of the total number of electrons
in the right and left ground states. The formal proof that re-
lates the electron operator to the zero mode operators is given
by the Jacobi identity [27]. The bosonic particle–hole exci-
tations [22, 26] are given by: 
R,σ (x) = 
σ(x) − �σ(x),

L,σ (x) = 
σ(x) + �σ (x). The zero mode fermion excita-
tions are given in terms of the zero mode coordinates αR,σ , αL,σ

and their canonical conjugate fermion number operators N̂R,σ ,
N̂L,σ (σ =↑,↓). The physics of the zero modes is described
in terms of the charge operator Q̂c = ∑

σ=↓,↑[N̂R,σ + N̂L,σ ]
and the magnetization operator Q̂s = [(N̂R,σ=↑ + N̂L,σ=↑) −
(N̂R,σ=↓ + N̂L,σ=↓)]. The canonical conjugate variables to
the charge and magnetization are given by the charge coor-
dinate α̂ = ∑

σ=↓,↑[αR,σ + αL,σ ] and the magnetization coor-
dinate α̂s = [(αR,σ=↑+αL,σ=↑)−(αR,σ=↓+αL,σ=↓)]. The zero
modes obey the commutation rules: [αR,σ , N̂R,σ ′ ] = iδσ,σ ′ ,
[−αL,σ , N̂L,σ ′ ] = iδσ,σ ′ and [αR,σ , N̂L,σ ′ ] = [αL,σ , N̂R,σ ′ ] =
0.

4. The model Hamiltonian in the boson–fermion
representation

The Bethe ansatz formulation [28] and equations (2) and (3)
allow us to map equation (1) into a charge and spin
interacting model. The mapping is a function of the Hubbard

interaction strength U ≡ Û
td

and the electronic density
ne. The Hamiltonian is controlled by the charge parameter
K = K (U, ne), spin parameter Ks = K (U, ne), umklapp
interaction g = g(U, ne) = ĝ�2, spin backward scattering
parameter gs = g(U, ne) = ĝs�

2, Fermi velocity vF,
charge density wave velocity v = v(U, ne) and the spin
density wave velocity vs = vs(U, ne). The Hamiltonian in
equation (1) is replaced by: H = H n 
=0

c + H n 
=0
s + H (n=0). The

first two Hamiltonians H n 
=0
c + H n 
=0

s represent the particle–
hole excitations and H (n=0) represents the zero modes. The
charge excitations H n 
=0

c (
,�; α̂, Q̂c) are given in terms of
the bosonic fields 
 = 
↑+
↓√

2
, � = �↑+�↓√

2
and the zero mode

fermionic fields α̂, Q̂c:

H n 
=0
c (
,�; α̂, Q̂c)

= vh̄

[∫ L/2

−L/2
dx

[
K

2
(∂x�(x))

2 + 1

2K
(∂x
(x))

2

− g cos

[√
8π
(x)+ α̂ +

(
4kF(VG)+ 2π

L
Q̂c

)
x

]]]

+ e2

πκ0

∫ L/2

−L/2

∫ L/2

−L/2
dx dx ′ ∂x
(x)

[
e2

√
(x − x ′)2 + d2

− e2

√
(x − x ′)2 + ξ 2

]
∂x′
(x ′) (4)

where v is the charge velocity vK = vF = h̄KF(VG)

m∗ and
K = K (U, ne) is the charge interaction parameter. The
last term in equation (4) represents the forward part of the
long range interaction given in equation (1) with the screening
length ξ . The long range interaction is controlled by the
coupling constant γ = e2

h̄c · 1
κ0

, where c is the light velocity
and κ0 = 13.18 is the dielectric constant for GaAs. The
strength of the umklapp interaction g is determined by two
parts: the short range Hubbard U repulsive interaction and the
large momentum transfer of the Coulomb interaction obtained
after the projection. The spin density wave excitations are
given by the Hamiltonian H n 
=0

s (
s,�s; α̂s, Q̂s) with the spin
density wave operators: 
s = 
↑−
↓√

2
, �s = �↑−�↓√

2

H n 
=0
s (
s,�s; α̂s, Q̂s)

= vsh̄

[∫ L/2

−L/2
dx

[
Ks

2
(∂x�s(x))

2 + 1

2Ks
(∂x
s(x))

2

+ gs cos

(√
8π
s(x)+ α̂s + 2π

L
Q̂sx

)]]
(5)

where vs = vF
Ks

< v is the spin wave velocity, Ks > 1
is the spin stiffness and gs is the spin density wave coupling
constant. Next we present the zero mode Hamiltonian H (n=0)

using the normal order notation: : H (n=0) :≡ H (n=0) −
〈F |H (n=0)|F〉 where |F〉 is the unperturbed Fermi surface at
zero temperature given in terms of shifted operators, NR,σ =
N̂R,σ + 〈F |NR,σ |F〉; NL,σ = N̂L,σ + 〈F |NL,σ |F〉 (see
appendix A). The normal order, zero mode Hamiltonian takes
the form: : H (n=0) :=: H (n=0)

0 : + : H (n=0)
int :.

: H (n=0)
0 := hvF

2L
[N̂2

R,σ=↑ + N̂2
L,σ=↑ + N̂2

R,σ=↓ + N̂2
L,σ=↓] (6)

: H (n=0)
int := u(c)(L)[(N̂R,σ=↑ + N̂L,σ=↑)

+ (N̂R,σ=↓ + N̂L,σ=↓)]2 − u(s)(L)[(N̂R,σ=↑ + N̂L,σ=↑)2

− (N̂R,σ=↓ + N̂L,σ=↓)2] + e2

κ0

1

2L
F

(
L

d
,
ξ

d

)

× [(N̂R,σ=↑ + N̂L,σ=↑)+ (N̂R,σ=↑ + N̂L,σ=↑)]2. (7)

The zero mode coupling constants obtained from equation (1)
are given by the renormalized charge backward interaction
u(c)(L) = hvF

2L (
1−K 2

K 2 ) and the backward spin interaction

u(s)(L) = hvF
2L (

1−K 2
s

K 2
s
). At zero temperature and L → ∞,

Ks goes to 1 and the backward interaction u(s)(L) vanishes.

The function F( L
d ,

ξ

d ) = log[
√

[1+( d
L )

2]+1√
[1+( d

L )
2]−1

] − log[
√

[1+( ξL )2]+1√
[1+( ξL )2]−1

]
is the Fourier transform of the long range screened potential.
At finite temperatures, the Fermi energy is shifted by δμ0(T ),
which modifies the zero mode Hamiltonian: δH (n=0) =
δμ0(T )[(N̂R,σ=↑ + N̂L,σ=↑)+ (N̂R,σ=↑ + N̂L,σ=↑)].

3
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Figure 1. The effective parameter 1
K 2

eff(l(VG))
that is proportional to the

inverse compressibility is plotted as a function of the gate voltage
l = l(VG) for L = 10−6 m and the screening ratio ξ

d = 10.

5. The renormalization group equations

One of us [30] has developed an RG method which is
applicable for the Hamiltonian representation. This method
has been used [24] to derive the RG equations for the unbiased
sine-Gordon model in the presence of long range interactions
controlled by the coupling constant γ = e2

h̄c · 1
κ0

.

H n 
=0
c (
,�) = vh̄

[∫ L/2

−L/2
dx

[
K

2
(∂x�(x))

2 + 1

2K
(∂x
(x))

2

− g cos(
√

2n8π
(x))

]]

+ e2

πκ0

∫ L/2

−L/2

∫ L/2

−L/2
dx dx ′ ∂x
(x)

×
[

e2

√
(x − x ′)2 + d2

]
∂x′
(x ′). (8)

In the absence of the Coulomb interaction the model
is equivalent to the classical two-dimensional sine-Gordon
model. According to [33, 34] the model is gapped for K < 1

2n ,
n = 1, 2 . . .. The long range interaction modifies the results
and drives the model to a gapped phase for any value of K . We
have extended the RG calculations for the biased sine-Gordon
model g cos[√8π
(x)+ α̂ + (4kF(VG) + 2π

L Q̂c)x], given in
equation (4). We obtain the new RG equations as a function
of the bias and the screening length ξ for the differential
momentum shell dl = − d�

�
.

(
4kF(VG)+ 2π

L
Q̂c

)
→

(
4kF(VG)+ 2π

L
Q̂c

)
el (9)

dĝR(l)

dl
= 2ĝR(l)

(
1 − KR(l)√

(1 + γ ( c
vR(l)

)MR(l))

− K 2
R(l)ĝ

2
R(l)

4(1 + γ ( c
vR(l)

)MR(l))

)
(10)

dKR(l)

dl
= − K 3

R(l)ĝ
2
R(l)

8(1 + γ c
vR(l)

MR(l))
(11)

dvR(l)

dl
= vR(l)KR(l)2 ĝ2

R(l)

4(1 + γ c
vR(l)

MR(l))
(12)

where MR(l) is the difference of two Bessel functions K0(x):
MR(l) = 2(K0[e−l ] − K0[ ξd · e−l ]) The solution of the
RG equations depends on the initial values of the interaction
parameters ĝR(l = 0), KR(l = 0) and the ratio ξ

d . We
will study the case where 4kF(VG) � π

d . In order to
compute the scaling functions, we need to determine the
relation between the logarithmic scale l and the voltage
VG. Based on the experimental observation [3], we have
a perfect conductance for a particular gate voltage V (0)

G for
which the umklapp interaction is negligible. This will happen
if 4kF(V

(0)
G ) corresponds to the momentum π

d . For this
case we find an oscillating behavior for the sine-Gordon
term: g cos[√8π
(x) + α̂ + (4kF(V

(0)
G ) + 2π

L Q̂c)x] =
g(−1)n cos[√8π
(x) + α̂ + ( 2π

L Q̂c)x] and can ignore the

umklapp contribution. For lower gate voltages VG < V (0)
G

the situation is different. Following [31] we do not neglect
the umklapp interaction for VG < V (0)

G , instead we compute
the effective coupling constant at the length scale l =
l(VG). This length scale l = l(VG) is determined by the
equation 4kF(VG)el(VG) = 4kF(V

(0)
G ) and is given by l(VG) =

log[ 4kF(V
(0)
G )

4kF(VG)
]. At this length scale, the renormalized umklapp

interaction alternates in sign g(−1)n and can be neglected if the
sine-Gordon coupling constant is small. Using this procedure
we substitute the function l(VG) into the RG equations and find
the renormalized Luttinger parameter as a function of the gate
voltage VG. Since the wire has a finite length L we stop the
scaling when we reach the value l = minimum[l(VG), lL],
where lL = log[ L

d ]. In the presence of the Coulomb
interactions the Luttinger parameter KR(l(VG)) is replaced by
the effective parameter Keff(l(VG)), computed from the RG
equations (9)–(12):

Keff(l(VG)) = KR(l(VG))√
1 + γ · c

vR(l(VG))
· log[( ξd )2]

. (13)

The effective interaction parameter Keff(l(VG)) decreases
monotonically with the decrease in the density and exhibits
a maximum for densities where Keff(l(VG)) ≈ 1

2 . The
charge density velocity is enhanced to v = vF

Keff(l(VG))
.

When the screening ratio approaches ξ

d = 1, the Coulomb
renormalization is absent and Keff(l(VG)) = KR(l(VG)). In
figure 1 we have plotted 1

K 2
eff(l(VG))

as a function of the gate

voltage. Following [3], we have used for the gate voltage V (0)
G

the value V (0)
G = −5.1 V. We observe that 1

K 2
eff(l(VG))

has a

minimum for voltages that corresponds to the region where the
0.7 feature is seen. Since the compressibility κ is proportional
to the square of the Luttinger parameter κ ∝ K 2

eff(l(VG)), we
conclude that a maximum in the compressibility suggests the
formation of a gap. (Since the compressibility is proportional
to the derivative of the renormalized chemical potential
μR(VG, l(VG)), 1

κ
= (ne(VG))

2∂ne(VG)[μR(VG, l(VG))], we also
expect a minimum for the derivative.)

6. The effective Hamiltonian 1
2 � Keff(l(VG)) � 1 for

L > ξ

Using the dependence of the Fermi momentum kF(VG) <

kF(V
(0)

G ) on the gate voltage VG < V (0)
G , we find that

4
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the umklapp interaction and the Luttinger parameter are
renormalized. Following the analysis from section 5, we find

that at the length scale l(VG) = log[ 4kF(V
(0)
G )

4kF(VG)
] the renormalized

umklapp interaction is negligible, g(l(VG)) ≈ 0, and the
renormalized velocity is vF

Keff(l(VG))
. When L > ξ , the effective

Luttinger parameter is restricted to 1
2 � Keff(l(VG)) � 1. The

renormalized bosonic Hamiltonian is given by

H (n 
=0)
c,l(VG)

[
R,�R] ≈ h̄vR(l(VG))

[∫ L/(2el(VG))

−L/(2el(VG))

dx

[
KR(l(VG))

2

× (∂x�R(x))
2 + 1

2KR(l(VG))
(∂x
R(x))

2

]]

+ e2

πκ0

∫ L/(2el(VG))

−L/(2el(VG))

dx dx ′ ∂x
R(x)

×
⎡

⎣ 1√
(x − x ′)2 + (

d
el(VG )

)2

− 1√
(x − x ′)2 + (

ξ

el(VG )

)2

⎤

⎦ ∂x′
R(x
′) (14)

H n 
=0
s (
s,�s; α̂s, Q̂s, l(VG)) = h̄vs,R(l(VG))

[∫ L/(2el(VG ))

−L/(2el(VG ))

dx

×
[

Ks(l(VG))

2
(∂x�s,R(x))

2 + 1

2Ks(l(VG))
(∂x
s,R(x))

2

]

+ gs(l(VG)) cos

(√
8π
s,R(x)+ α̂s + 2π

L
Q̂sxel(VG)

)]
.

(15)

Since Ks(l(VG)) � 1, the sine-Gordon scaling shows
that gs(l(VG)) is an irrelevant coupling constant which
decreases with the increase of l(VG). The renormalized zero
mode Hamiltonian will depend on the renormalized coupling
constants given by the RG equations (9)–(13):

: H (n=0)(l(VG)) :=: H (n=0)
0 (l(VG)) : +H (n=0)

int. (l(VG)). (16)

The first term : H (n=0)
0 (l(VG)) represents the non-interacting

part:

: H (n=0)
0 (l(VG)) := hvF

2L
× [N̂2

R,σ=↑ + N̂2
L,σ=↑ + N̂2

R,σ=↓ + N̂2
L,σ=↓]. (17)

The second term represents the interactions : H (n=0)
int (l(VG)) :,

given as a function of the charge operator Qc = [(NR,σ=↑ +
NL,σ=↑) + (NR,σ=↓ + NL,σ=↓)] = Q̂c + 〈F |Qc|F〉 and the
magnetization operator Qs = [(NR,σ=↑+NL,σ=↑)−(NR,σ=↓+
NL,σ=↓)] = Q̂s + 〈F |Qs|F〉.

: H (n=0)
int (l(VG)) := ηc(l(VG))Q̂

2
c − ηs(l(VG))Q̂

2
s (18)

where ηc(l(VG)) ≡ hvF
2L [( 1−K 2

R(l(VG))

K 2
R(l(VG))

)+ γ ( c
vF
)F( L

del(VG )
,

ξ

del(VG )
)]

are the renormalized backward charge and magnetic interac-

tions ηs(l(VG)) = hvF
2L (

1−K 2
s,R(l(VG))

K 2
s,R(l(VG))

). Both terms are a function

of the screened Coulomb interaction F( L
del(VG )

, ξ

del(VG )
) given by

F

(
L

del(VG)
,

ξ

del(VG)

)
= log

⎡

⎣

√[
1 + (

del(VG )

L

)2] + 1
√[

1 + (
del(VG )

L

)2] − 1

⎤

⎦

− log

⎡

⎣

√[
1 + (

ξel(VG)

L

)2] + 1
√[

1 + (
ξel(VG)

L

)2] − 1

⎤

⎦ . (19)

At finite temperatures the effect of the e–e interactions replaces
the non-interacting ground state |F〉 with a shifted Fermi
surface given by the renormalized ground state |G〉. In
appendix B we find that the single particle states ε(n) are
shifted up in energy by the self-energy δ�(VG, l(VG)). In
appendix B we have computed the self-energy δ�(VG, l(VG))

at low temperatures T , which are higher than the spin exchange
energy, KBT > ηs(l(VG))〈G|Q̂2

s |G〉 = KBT ∗. |G〉 is
the renormalized Fermi surface, which replaces the non-
interacting Fermi surface |F〉, and T ∗ is a temperature of
the order of 0.05 K. For temperatures T > T ∗ the self-
energy is given by δ�(VG, l(VG)) ≈ 2ηc(l(VG))〈G|Q̂c|G〉
(see appendix B). The effective zero mode Hamiltonian is
replaced by

: H (n=0)(l)eff :≈ hvF

2L
[N̂2

R,σ=↑ + N̂2
L,σ=↑ + N̂2

R,σ=↓ + N̂2
L,σ=↓]

+ δ�(VG, l(VG))[N̂R,σ=↑ + N̂R,σ=↓ + N̂L,σ=↑
+ N̂L,σ=↓]. (20)

7. The current for the interacting region
1
2 � Keff(l(VG)) � 1, T > T ∗

For finite values of l(VG) the spin density wave coupling
constant gs(l(VG)) and the spin density wave velocity
vs(l(VG)) = vF

Ks(l(VG))
� vF

Kc(l(VG))
= v(l(VG)) are both

small. At temperatures T > T ∗, we replace the interacting
zero mode Hamiltonian with the effective zero mode
Hamiltonian controlled by the self-energy δ�(VG, l(VG))

given in equation (20). In order to compute the current, we
include the reservoir Hamiltonian HRes, controlled by the drain

source voltage V = μ
(0)
Left−μ(0)Right

e :

HRes = eV

2

∑

σ=↑,↓
[(N̂L,σ − N̂R,σ )]. (21)

The partition functions in the presence of the reservoir
is given by: Z = Tr [e−β:H (n=0)(l(VG))eff:e−β:HRes:] ≡
Tr [e−β:H (n=0)

0 :e−β:H eff
Res :]. The self-energy allows us to replace the

reservoir Hamiltonian HRes by an effective reservoir H eff
Res:

H eff
Res = HRes +

∑

σ=↑,↓
[δ�(VG, l(VG))(N̂L,σ + N̂R,σ )]. (22)

The static conductivity is computed using the non-interacting
zero mode Hamiltonian H (n=0)

0 given in equation (17) and
effective reservoir H eff

Res given by equation (22). The current
is obtained from the derivative of the zero mode coordinate α̂

5
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(see section 3), Î = e
2π

dα̂
dt . Using the Heisenberg equation of

motion we obtain the current operator.

Î = e

2π

dα̂

dt
= e

ih̄
[α̂, H (n=0)

0 ] = evF

L

∑

σ=↑,↓
[N̂R,σ − N̂L,σ ].

(23)
The thermal expectation function is obtained with the help of
the partition function Z .

I = Tr [e−βH (n=0)
0 e−βH eff

Res Î ][Z ]−1. (24)

Following appendix A we obtain

I = evF

L

∑

σ=↑,↓

m=nF(VG)∑

m=−nF(VG)

×
(

fFD

[
εL(m)+ δ�(VG, l(VG))+ eV

2 − δμ0(T )

KBT

]

− fFD

[
εR(m)+ δ�(VG, l(VG))− eV

2 − δμ0(T )

KBT

])
(25)

where εL(m) and εR(m) are the single particle energies and
2nF(VG) is the discrete bandwidth introduced in appendix A.
We include a small single particle broadening which will
allow us to replace the discrete sum εR,L(m) by a continuum
integration variable ε. Performing the integration with respect
the energy variable ε and expanding with respect the voltage V
gives the conductance G = I

V :

G ≈ 2e

hV

∫ εF(VG)

−εF(VG)

dε

×
(

fFD

[
ε + δ�(VG, l(VG))+ eV

2 − δμ0(T )

KBT

]

− fFD

[
ε + δ�(VG, l(VG))− eV

2 − δμ0(T )

KBT

])

= 2e2

h

(
fFD

[−εF(VG)+ δ�(VG, l(VG))− δμ0(T )

KBT

]

− fFD

[
εF(VG)+ δ�(VG, l(VG))− δμ0(T )

KBT

])
. (26)

We observe that the self-energy determines the conductance
through an effective chemical potential. The bottom
of the bandwidth −εF(VG) is replaced by −εF(VG) +
δ�(VG, l(VG)). This allows us to introduce the renormalized
effective chemical potential μR(VG, l(VG)) = εF(VG) −
δ�(VG, l(VG)).

8. The strongly interacting region Keff(l(VG)) ≈ 1
2 ,

T > T ∗—the effective U = ∞ Hubbard model

When Keff(l(VG)) ≈ 1
2 and T > T ∗, one obtains an

incoherent Luttinger liquid which can be mapped to the
Hubbard model U → ∞. (When U → ∞ the interaction
Luttinger parameter is given by K → 1

2 and the spin
excitations, which are of the order 1

U , can be ignored.)
This limit U → ∞ has been considered in the past [29].
In this limit the following constraints must be obeyed:
ψ+
σ=↑(x)ψσ=↑(x) + ψ+

σ=↓(x)ψσ=↓(x) = 0, 1. Using the

constraints, we have found the following representation [29]
for the electron operators: ψσ (x) = bσ (x)�(x), ψ+

σ (x) =
�+(x)b+

σ (x), where �(x) is the electron charge operator and
bσ (x) are the hard core boson for the spin excitations. They
obey the constraints: b+

σ=↑(x)bσ=↑(x) + b+
σ=↓(x)bσ=↓(x) =

�+(x)�(x). In one dimension, this model has been
represented in terms of the bosonic electron operators [29]

e and �e and spinon operators 
s and �s. The constraint
is imposed on the electron density: ρe(x) ≡ ρσ=↑(x) +
ρσ=↓(x) = 1√

π
[∂x
σ=↑(x) + ∂x
σ=↓(x)] ≡ 1√

π
∂x
e(x).

The canonical conjugate momentum is given by: ∂x�e(x) ≡
1
2 [∂x�σ=↑(x)+ ∂x�σ=↓(x)]. For non-interacting electrons we
have the commutation rule [
e(x), ∂x�e(y)] = ih̄δ(x − y).
Due to the exclusion of double occupancy, the electronic
density is reduced by a factor of two (in comparison with
non-interacting electrons) and the commutator is modified to:
[
e(x), ∂x�e(y)]Constraint ≈ i

2 h̄δ(x − y).
The Hamiltonian for the U → ∞ case (away from half

filling) is given in terms of the fields 
e(x), �e(x): He =∫
dx vh̄[(∂x�e(x))2 + 1

4 (∂x
e(x))2].
At finite temperatures, the spinon Hamiltonian Hs =∫

dx h̄v
2 [(∂x�s(x))2 + (∂x
s(x))2] ≈ 0 is negligible (
s(x) ≡

1√
2
[
σ=↑(x) − 
σ=↓(x)] and �s(x) = 1√

2
[�σ=↑(x) −

�σ=↓(x)]). If we inject an electron with a given spin at one
lead, we will detect on the other lead a charge with an arbitrary
spin. The effect of voltage difference V between the leads is
included into the calculation through the reservoir Hamiltonian

eV
2
√
π

∫
dx [∂x�σ=↑(x) + ∂x�σ=↓(x)] ≡ eV√

π

∫
dx ∂x�e(x).

Using the Heisenberg equations of motion with the modified
commutator we obtain the electronic current operator [37]
Je = ev

2
√
π
[∂x�σ=↑(x)+∂x�σ=↓(x)] ≡ ev√

π
∂x�e(x). The extra

factor of 1
2 which appears in the current operator Je is due to

the commutator [, ]Constraint [37]. Therefore, the conductance is
reduced to G ≈ e2

h .

9. The conductance in the Wigner crystal limit
Keff(l(VG)) < 1

2

For large screening lengths ξ , the effective Luttinger charge
stiffness Keff(l(VG)) decreases below Keff(l(VG)) < 1

2 at
low temperatures. Under these conditions, the RG analysis
reveals that the alternating umklapp coupling constant g(−1)n

generates a gap at T = 0. To investigate this region, we
introduce two sublattices for the even and odd sites. We
replace the bosonic fields by the even and odd combinations:

−(y = 2nd) = 
(x=2nd)−
(x=(2n+1)d)√

2
and 
+(y = 2nd) =


(x=2nd)+
(x=(2n+1)d)√
2

. We integrate out the antisymmetric

field 
−(y = 2nd) = 
(x=2nd)−
(x=(2n+1)d)√
2

and obtain an
effective Hamiltonian for the symmetric field
+(y = 2nd) =

(x=2nd)+
(x=(2n+1)d)√

2
. The effective Hamiltonian has a set of

new coupling constants |g(2)new| ≈ g2

2! 〈(sin[√4π
−(y)])2〉.
H n 
=0

c (
+,�+) ≈ h̄v(l(VG))

×
[∫ L/2

−L/2
dy

[
Keff(l(VG))

2
(∂y�+(y))2

6
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Figure 2. The conductance G in units of 2e2

h as a function of the bias
gate voltage l = l(VG) for the temperatures T = 1 K (upper line),
T = 1.25, 1.5, 1.75, 2.0 , 2.25 , 2.5 and 3 K (the lowest line) for the
umklapp parameter g(l = 0) = 0.05, K (l = 0) ≈ 0.98, L = 10−6 m
and the screening ratio ξ

d = 10.

+ 1

2Keff(l(VG))
(∂y
+(y))2

+ g(2)new,R(l(VG)) cos(
√

16π
+(y))
]]

(27)

where the new coupling constant g(2)new,R(l(VG)) obeys the RG
equation.

dĝ(2)new,R(l)

dl
= 2ĝ(2)new,R(l)[1 − 2Keff(l)]. (28)

This equation shows that ĝ(2)new,R(l) is a relevant coupling
constant for Keff(l(VG)) <

1
2 . As a result, a charge gap

� ≈ �(ĝ(2)new)
1

2(2Keff (l(VG))−1) will open. When Keff(l(VG)) <
1
2 , we obtain from equation (28) that at T = 0 the
expectation value of the phase

√
16π〈
+(x)〉 = π will

give rise to a Wigner crystal order ρ(x) ≈ constant +
cos[4kFx + π√

2
]e− π

2 〈(
(x)−〈
(x)〉)2〉. (Expanding the cosine
term in equation (27) around the ground state 〈
+(x)〉 
=
0 shows that the charge density wave has a gap �. This
gap suppresses the fluctuations e− π

2 〈(
(x)−〈
(x)〉)2〉 
= 0 and
stabilizes the Wigner Crystal order at T = 0.) In order
to evaluate the effect of the charge gap � on the electronic
spectrum, we map [35, 36] the bosonic charge Hamiltonian to
a spinless fermion for Keff(l(VG)) ≈ 1

2 . We introduce a two
component spinless fermion: χ+(x) = [χ1(x), χ2(x)]+ ≡√

�
2π [ei

√
4π
+(x), e−i

√
4π
+(x)]+. As a result we find for

Keff(l(VG)) ≈ 1
2 that the Hamiltonian in equation (27) is

mapped to a spinless fermion model:

Hc,F =
∫

dx

[
h̄v(l(VG))χ

+(x)(−i∂xσ3)χ(x)

+ ĝ(2)new,R(l(VG))

2
(χ+(x)σ1χ(x))

2

]

≈
∫

dx [h̄v(l(VG))χ
+(x)(−i∂xσ3)χ(x)

+ ĝ(2)new,R(l(VG))〈χ+(x)σ1χ(x)〉χ+(x)σ1χ(x)] (29)

Figure 3. The conductance G in units of 2e2

h for four screening ratios
ξ

d = 1 (upper line), ξd = 1.1, 1.3, 1.5, 2, 3, 5, 10, 50 and 100 at
temperature T = 1 K, length L = 10−6 m, for the interaction
parameters ĝR(l = 0) = 0.05, K (l = 0) ≈ 0.98.

Figure 4. The shift in the chemical potential δ�(VG, l(VG)) for
screening ratio ξ

d = 10 at temperature T = 1 K, length L = 10−6 m,
for the interaction parameters ĝR(l = 0) = 0.05, K (l = 0) ≈ 0.98.

where σ3 and σ1 are the Pauli matrices. As a result,
we have a gap 2�̂ between the lower band and the upper
band given by the self-consistent solution: � ≈ �̂ =
ĝ(2)new,R(l(VG))〈χ+(x)σ1χ(x)〉. The energy difference �

between the Fermi energy and the top of the lower electronic
band will affect the conductance through the Fermi–Dirac
function. For this case, the self-energy is replaced by the
gap � and the conductance is approximated by G ≈ 2e2

h [1 −
fFD(

�
KBT )]; for KBT � � the conductance is given by G ≈ e2

h .

10. Numerical results

We have used the experimental relation between the Fermi
momentum and the gate voltage VG given by KF(VG) =
π
2 ne(VG) = Ca

e (VG − V th), V th ≈ −5.52 V, Ca
e = 1.2 ×

108 (V m)−1 [3] to compute the conductance in figures 2
and 3. In figure 2 we have considered a typical screening
ratio ξ

d = 10 and plotted the conductance for a varying range
of temperatures 1–3 K. Figure 3 shows the conductance at a
fixed temperature T = 1 K for different screening lengths.
We observe that for ξ

d = 1, the Coulomb interaction is

7
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Figure 5. The derivative of the chemical potential dμR(VG,l(VG))

dVG
for

screening ratio ξ

d = 10 at temperature T = 1 K, length L = 10−6 m,
for the interaction parameters ĝR(l = 0) = 0.05, K (l = 0) ≈ 0.98.

completely screened and the 0.7 feature is absent. In figure 4,
we plot the dependence of the self-energy δ�(VG, l(VG))

on the gate voltage VG. We observe that at low densities
the free energy has an extremum at a finite density. The
renormalized chemical potential μR(VG, l(VG)) = εF(VG) −
δ�(VG, l(VG)) vanishes at the voltage V ∗

G > V th. For
V th < VG < V ∗

G, the renormalized chemical potential is
negative, indicating the formation of a charge density wave
gap at T = 0 for Keff(l(VG)) <

1
2 . The derivative of the

conductance and chemical potential are related to the inverse
compressibility: dG (VG)

dVG
∝ dμR(VG,l(VG))

dVG
∝ 1

n2
e (VG)κ(VG)

. The 0.7
anomaly is translated into a minimum around VG = −5.49 V
for the conductance derivative dG(VG)

dVG
and the compressibility

κ(VG), which is proportional to the inverse square of the
effective interaction parameter Keff(l(VG)) shown in figure 1.
Therefore, we have the confirmation for the formation of a
charge density wave gap for Keff(l(VG)),

1
2 at zero temperature.

In figure 5, we plot the function dμR(VG,l(VG))

dVG
. This function has

a minimum at the voltage VG = −5.49 V, which corresponds
to the 0.7 2e2

h structure observed for the conductance graph.

11. The effect of the Zeeman magnetic field

The Zeeman magnetic field [2] introduce a bias term
2(k↑

F (VG)) − (k↓
F (VG))x into the last term in equation (5).

Expressing the bias in terms of the magnetic field B|| we find,

2(k↑
F (VG))− (k↓

F (VG)) = 2kF(VG)(

√
1 + �z

2μF
−

√
1 − �z

2μF
) ≈

4kF(VG)(
�z

2μF
), where μF = h̄2k2

F(VG)

2m∗ is the Fermi energy and
�z = g||μB B|| is the Zeeman energy. As a result the spin
part sine-Gordon term vanishes, since Ks(l) > 1. As a result
the spin wave velocity vs = vF

Ks
is further reduced. For large

magnetic fields �z

2μF
> 1, the wire will be polarized and we

will have only one propagating channel with the conductance
G ≈ 0.5 × (2e2/h).

The effect on the charge density wave Hamiltonian will be
to replace 4kF(VG) in equation (4) by: 2[k↑

F (VG)+ k↓
F (VG)] ≡

4kF(VG)[
√

1 + �z

2μF
+

√
1 − �z

2μF
] 1

2 . For �z

2μF
< 1 we show that

the perfect conductance in the absence of the Zeeman magnetic

Figure 6. The effect of the magnetic field on the conductance in
units 2e2/h. The first graph represents the conductance for zero
magnetic field, the second graph represents the conductance for a
magnetic field B = 3 T and the third graph represents the
conductance for the magnetic field B = 10 T. The other parameters
were: screening ratio ξ

d = 10, temperature T = 1 K, length
L = 10−6 m, d = 10−8 m, ĝR(l = 0) = 0.05 and K (l = 0) ≈ 0.98.

field computed at the gate voltage V 0
G is shifted to a larger

gate voltage V 0−Zeeman
G in the presence of the Zeeman field:

2[k↑
F (V

0−Zeeman
G ) + k↓

F (V
0−Zeeman
G )] ≈ 4kF(V

0−Zeeman
G )[1 −

1
8 (

�z

2μF
)2] = 4kF(V 0

G) = π
d . This formula shows the shift in the

perfect conductance from 4kF(V 0
G) = π

d to a larger gate voltage

V (0−Zeeman)
G > V 0

G, given by kF(V
(0−Zeeman)

G ) ≈ kF(V 0
G)

1− 1
8 (

�z
2μF

)2
. This

result is in agreement with the experimental observations [2].
The conductance at finite temperatures T > T ∗ will be

given by replacing the self-energy in equation (26) with a new
self-energy computed in the presence of the magnetic field,
εF,σ=↑(VG) = εF(VG) + �z

2 and εF,σ=↓(VG) = εF(VG) − �z

2 .
The results for the conductance are shown in figure 6. We
show three graphs: the first graph (thin line) represents the
conductance in the absence of the magnetic field and the other
two graphs represent the conductance for the magnetic fields
B = 3 and 10 T. We observe a shift of the conductance to
higher voltages with an increase of the magnetic field.

12. Conclusion

We have presented a model which explains the conductance
anomaly at finite temperatures as a function of the gate
voltage. Due to the Coulomb long range interactions a
weakly interacting electronic system can flow to the strong
coupling limit Keff(l(VG)) <

1
2 . When the screening length

is not too large, the Luttinger stiffness is restricted to 1
2 �

Keff(l(VG)) < 1. As a result, the conductance of an infinite
wire is perfect at zero temperature. At temperatures larger than
the magnetic exchange energy T > T ∗, we have an incoherent
Luttinger model. For Keff(l(VG)) ≈ 1

2 the interacting wire is
equivalent to the Hubbard U → ∞ model with the anomalous
conductance G ≈ e2

h .
For large screening lengths the interacting charge stiffness

decreases to Keff(l(VG)) <
1
2 . As a result we find that at

zero temperature we have a Wigner crystal with a charge gap
�. At finite temperatures the formation of charge density

8
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wave gap gives rise to the anomalous conductance G ≈
2e2

h [1 − fFD(
�

KBT )]. Following [2] we have investigated the
effect of the magnetic field. We have shown that the magnetic
field shifts the region of the perfect conductance to higher
voltages.

Some of the concepts used in our work are common to
other theories [38, 39]. The long range interactions have been
introduced by [12, 14]; in the present paper we show that, by
varying the gate voltage and screening length we obtain either
a strongly interacting metal or a Wigner crystal. Other theories
use a weak scattering potential [8] or charge localization [9, 40]
and are consistent with our picture. In our view the origin of
the scattering potential (microscopic or phenomenological) is
not crucial! The crucial effect is that any weak scattering is
strongly enhanced by the long range interactions! Our findings
show that, due to the long range interaction, any negligible
scattering potential is enhanced and eventually can drive the
system to an insulating regime. It is the interplay between
the screening length, gate voltage and temperature which
gives rise to the conductance anomaly. One of the popular
theories is based on the Kondo model [4, 9]. The Kondo
picture dictates that the anomaly should be observed above the
Kondo temperature. When the temperature is lowered below
the Kondo temperature, the conductance is restored to the
universal value. This picture is consistent with our theory in the
following way: if the strong coupling regime Keff(l(VG)) ≈ 1

2
is reached in the metallic phase, we can use the Hubbard U →
∞ limit, which is the basis for deriving the Kondo model. The
Kondo physics emerges for finite exchange coupling J ∝ 1

U .
In our case, the anomalous conductance is observed at finite
temperatures T > T ∗, which is comparable to 1

U where the
Kondo picture emerges.
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Appendix A

The non-interacting Fermi surface at T = 0 is given by
the state |F〉, which is constructed from the vacuum |0〉:
|F〉 ≡ ∏

σ=↑,↓[∏nF(VG)

−nF(VG)
R+(m, σ )

∏−nF(VG)

nF(VG)
L+(m, σ )]|0〉.

We introduce the notation N̂R,σ N̂L,σ for the normal order at
zero temperature:

N̂R,σ =
nF(VG)∑

−nF(VG)

R+(m, σ )R(n, σ )

−
nF(VG)∑

−nF(VG)

〈F |R+(m, σ )R(m, σ )|F〉

≡ NR,σ − 〈F |NR,σ |F〉 (30)

N̂L,σ =
−nF(VG)∑

nF(VG)

L+(m, σ )L(m, σ )

−
−nF(VG)∑

nF(VG)

〈F |L+(m, σ )L(m, σ )|F〉

= NL,σ − 〈F |NL,σ |F〉. (31)

The presence of a reservoir with two chemical potentials μR

and μL is described by the reservoir Hamiltonian:

HRes = μR

nF(VG)∑

−nF(VG)

R+(m, σ )R(m, σ )

+ μL

nF(VG)∑

−nF(VG)

L+(m, σ )L(m, σ ). (32)

At finite temperatures, the Fermi surface is shifted by δμ0(T )
and is given (for the one-dimensional case) by: δμ0(T ) =
εF(VG)

π2

12 (
KBT
εF(VG)

)2. The temperature and the reservoir modifies
the number of fermions in the thermal ground state to
〈NR,σ (VG, μR, T )〉 and 〈NL,σ (VG, μL, T )〉 given by:

〈NR,σ (VG, μR, T )〉 =
−nF(VG)∑

nF(VG)

fFD

[
εR(m)− μR − δμ0(T )

KBT

]

(33)

〈NL,σ (VG, μL, T )〉 =
−nF(VG)∑

nF(VG)

fFD

[
εL(m)− μL − δμ0(T )

KBT

]
.

(34)
The expectation value of the normal order operators will be
given by:

〈N̂L,σ (VG, μL, T )〉 = 〈NL,σ (VG, μL, T )〉
− 〈NL,σ (δμ0(T ), T )〉;

〈N̂R,σ (VG, μR, T )〉 = 〈NR,σ (VG, μR, T )〉
− 〈NR,σ (δμ0(T ), T )〉.

The effect of the self-energy δ�(VG, l(VG), T ) will be taken in
consideration by substituting in the previous equations: μR →
μR − δ�(VG, l(VG), T ) and μL → μL − δ�(VG, l(VG), T ).

Appendix B

The purpose of this appendix is to compute the self-energy
δ�(VG, l(VG), T ) for the following model:

: H (n=0)
int (l) := ηc(l(VG))Q̂

2
c − ηs(l(VG))Q̂

2
s (35)

where Qc = Q̂c + 〈F |Qc|F〉 is the charge operator and
Qs = Q̂s + 〈F |Qs|F〉 is the magnetization operator. We
observe that the zero mode component of the Hamiltonian
commutes: [H (n=0)

0 (l), H (n=0)
int (l)] = 0. Therefore, at finite

temperatures, the partition function Z (n=0) = Tr [e−βH (n=0)(l)]
can be computed exactly. Our goal is to compute the
charge current Î = e dα̂

dt , which is given by the commutator
[α̂, H (n=0)(l)]. We will limited ourselves to finite temperatures
such that the exchange energy is smaller than the thermal
energy and, therefore, can be ignored (for long wires the spin

9
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stiffness approaches Ks ≈ 1 and the last term in equation (19)
ηs(l(VG)) vanishes). We will compute the self-energy at
finite temperature δ�(VG, l(VG)). For the non-interacting
ground state |F〉 with the electronic density ne(VG) we have
at a temperature T the equation: ne(VG) = 〈F |Qc|F〉

L =
4
L

∑m=nF(VG)

m=−nF(VG)
fFD[ ε(m)−δμ0(T )

KBT ]. The effect of the interactions
will replace the ground state |F〉 by the renormalized ground
state |G〉. The ground state represents a shifted Fermi Surface
given by the self-energy δ�(VG, l(VG)) determined by the self-
consistent equation:

δ�(VG, l(VG)) = 2ηc(l(VG))〈G|Q̂c|G〉

≡ 2ηc(l(VG))4
m=nF(VG)∑

m=−nF(VG)

fFD

×
[
ε(m)+ δ�(VG, l(VG))− δμ0(T )

KBT

]
. (36)

The solution for δ�(VG, l(VG)) is obtained once we replace
the sum by an energy integration (the density of states cancel
the velocity):

δ�(VG, l(VG)) ≡ hvF

[(
1 − K 2

R(l(VG))

K 2
Rl(VG)

)

+ γ

(
c

vF

)
F

(
L

del(VG)
,

ξ

del(VG)

)]
· ne(VG)

ε̂(VG, l, T, L)
(37)

where the explicit form ε̂(VG, l, T, L) represents the effective
dielectric function given by

ε̂(VG, l, T, L) = 1 + 4

[
1 − K 2

R(l(VG))

K 2
R(l(VG))

+ γ

(
c

vF

)
F

(
L

del(V G)
,

ξ

del(V G)

)
· r(T )

]
(38)

where r(T ) represents the thermal correction, which is 1 when
we use the approximation:

∫ εF(VG)+δ�(VG,l(VG))

εF(VG)−δ�(VG,l(VG))
dε fFD[ ε−δμ0(T )

KBT ]
≈ 0. When the self-energy is small with respect to the
Fermi energy δ�(VG,l(VG))

εF(VG)
� 1, we expand the Fermi–Dirac

function with respect to δ�(VG, l(VG)) and find: r(T ) =
fFD[−εF(VG)−δμ0(T )

KBT ] − fFD[ εF(VG)−δμ0(T )
KBT ].
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